SIKKIM MANIPAL INSTITUTE OF TECHNOLOGY DEPARTMENT OF CHEMISTRY COURSE OUTCOME

M.Sc. Chemistry

Ist Semester

Sl.No.	Semester	Subject Code	Subject Name	Course Outcome
1.	Ist	CH20101A	Principles of Inorganic Chemistry	 CO1: In-Depth knowledge of periodic properties of elements, structure and bonding in molecules. Ability to assign structure and deduce properties of a given molecules. CO2: Ability to explain acid base concept, magnetic properties of molecules, and their application in deducing properties of a molecule. CO3: In-Depth knowledge of synthesis, properties bonding of p- block elements and their compounds and applications. CO4: In-Depth knowledge of synthesis, properties bonding of Boranes, Carboranes, Metallocarboranes, Borazines, Phosphazenes, Sulfur-Nitrogen compounds, silicates, silicones. Iso- and Hetero-poly anions. Understand the concept of allotropy and its significance. CO5: In-Depth knowledge of Metal-Metal bonds, industrial importance of the compounds of main group elements. Brief review of inorganic chains, rings and cages, organometallic compounds of nontransition elements.
2.	ـ ـ	CH20102A	Principles of Organic Chemistry	 CO1: Ability to use MOT for predicting reaction mechanism CO2: Able to solve problems related with stereochemistry CO3: Able to use acidic and basic conditions for carrying out suitable reactions CO4: Understanding of role of reaction intermediate in organic synthesis and nucleophilic substitution reaction.
3.		CH20103A	Chemical Thermodynamics	CO1: To impart fundamental concepts of solution thermodynamics involving ideal and non-ideal systems.

0 MANG

4.	CH20104A	Analytical Chemistry	 CO2: To use solution thermodynamic concepts and phase equilibria in two-component and multi-component systems. CO1: Understand the principles of Chemometrics. CO2: Understand the underlying principles, techniques, data analysis of Seperation techniques and quantitative analysis. CO3: Ability to apply chemical analysis techniques for determining composition of samples.
5.	CH20401A	Analytical Chemistry Lab	 CO4: Interpret and optimize results. CO1: Independently perform separation of components. CO2: Perform accurately volumetric and gravimetric analysis.
6.	CH20402A	Physical Chemistry Laboratory	 CO3: Ability to analyse results. CO1: Ability to apply basic techniques of solution preparation and determine the aggregation process through Viscometric and conductometric methods. CO2: Understand the experimental procedure to determine the kinetic parameters of selected reactions. CO3: Ability to apply the knowledge of conductometric and potentiometric titration for determination of solubility of sparingly soluble salts. CO4: Ability to determine the composition and complex formation through spectroscopic analysis.

-

IInd Semester

AR RANG

Sl.No.	Semester	Subject Code	Subject Name	Course Outcome
1.		CH20105A	Modern Spectroscopic Techniques	 CO1: Understanding fundamentals of spectroscopy and ability to solve numerical problems (Determination of spectroscopic quantities, molar absorption coefficient). CO2: Understanding fundamentals of rotational spectroscopy, interpret spectra and solve numerical problems. (Determination of rotational constants Bond Length). CO3: Understanding fundamentals of vibrational spectroscopy, interpret spectra and solve numerical problems. (Force constant/Bond Energy). CO4: Understanding fundamentals of Electronic spectroscopy of atoms and molecules, interpret spectra and solve numerical problems. CO5: Understanding fundamentals of NMR and EPR spectroscopy, interpret spectra
2.	IInd	CH20106A	Organic Reactions And Mechanisms	 CO1: Build up a strong foundation on various aspects of a reaction mechanism to establish it. CO2: A clear conceptual understanding on various phenomena of organic compounds (especially unsaturated system)/intermediates through MOT. CO3: A detail understanding about rearrangement reactions based on substrate nature & reaction condition and their reaction path. CO4: A comprehensive knowledge on elimination reaction bases on substrate nature, used reagents and reaction conditions in organic synthesis. CO5: Develop a power to reason, creative thought on elimination reaction based on substrate nature and reaction based on substrate nature and reaction based on substrate nature and reaction based on substrate nature, used reagents and reaction conditions in organic synthesis.
3.	THENT OF	CH20107A	Computer Fundamentals and Programming	 CO1: Understand the functioning of functioning of hardware and software. CO2: Knowledge of basics of C-programming. CO3: Ability to write C-programs using conditional statements and loops.
UN * DED	Date	EMISTRY *		

4.	L. CH20108A Quantum CH20108A Chemistry- I	 CO4: Ability to write C-programs for solving common analytical problems in chemistry. CO1: To acquire basic knowledge in fundamentals of quantum chemistry. CO2: To understand the concept of wave function through the Schrodinger equation and understand the use of operators in quantum mechanics. CO3: To understand the applications of Schrodinger equation in simple systems like atoms and molecules. CO4: To acquire knowledge on quantum mechanical treatment of the Harmonic Oscillator, Energy eigenvalues and symmetry of the wave function. CO5: To understand the use of 	
5.	CH20403A	Computer Programming Lab	 Schrodinger wave equation in polar co- ordinates, particle in a ring, angular momentum and particle on a sphere model. CO1: Ability to write simple programs using logical operators, loops and arrays. CO2: Simplify complex problems using functions. CO3: Ability to write C-programs for data
6.	CH20404A	Organic Chemistry Lab	analysis for chemical problems. CO1: Learn and apply techniques used in Organic Chemistry laboratory for synthesis, purification and identification. CO2: Employ the basic techniques used in Organic Chemistry laboratory for analysis such as chromatography, spectroscopy and estimation.

/IIIrd Semester

Semester	Subject Code	Subject Name	Course Outcome
	СН20109А	Advanced Coordination Chemistry & Inorganic Reaction Mechanism	 CO1: Understanding of VBT, CFT and their applications. CO2: Ability to predict electronic transitions and interpret electronic spectra of transition metal complexes and influence of distortion, calculation of CFSE. CO3: Understanding fundamentals of molecular orbital theory and interpretation of electronic spectra. CO4: Understanding fundamentals of reaction mechanism & electron transfer reaction mechanism. CO5: Understand the importance of use of organometallic catalysts in different reactions & bonding in carbonyl complexes
III rd	СН20110А	Concepts in Organic Synthesis	 CO1: Ability to identify and deduce mechanisms of various types of pericyclic and photochemical reactions. CO2: In-depth understanding of solid state chemistry of peptides and its applications. CO3: In-depth understanding of catalysis in chemistry and its applications. CO4: Ability to identify and apply the oxidation-reduction reactions in synthesis. CO5: In-depth knowledge of heterocyclic chemistry and its applications.
	CH20111A	Chemical Dynamics and Electrochemistry	CO1: To impart basic knowledge of Chemical Kinetics of Collision theory and the activated complex theory. To understand the mechanisms of unimolecular reactions. CO2: To understand the chemistry of Complex reactions, consecutive reactions chain reactions, oscillatory, Thermal & photochemical chain reactions. To understand the kinetics of fast reactions. CO3: To acquire knowledge on the principles of Debye-Huckel model of ion- ion interactions and its verification. CO4: To understand the theory of electrolytic conductance and the principle of Dispersion of conductance through the Debye- Falkenhagen effect and Wien
		Code Code CH20109A III rd	Code Code Code Code Advanced Coordination Chemistry & Inorganic Reaction Mechanism Mechanism III rd CH20110A Chemical Dynamics and III CH20111A

4.	CH20112A	Biochemistry	 CO5: To impart knowledge on the chemistry of Ion-Solvent interaction, its concept, the experimental determination and its application to equilibria. CO1: Basic knowledge of biomolecules, biochemical solvents, important functional groups, importance of non-covalent bonds in biochemistry and biochemical thermodynamics CO2: Fundamental knowledge of protein, carbohydrate and lipid structures and functions CO3: Basic knowledge of polynucleotide structures, gene, genetic code, protein synthesis within cell and control of genetic expressions CO4: Fundamental knowledge about the relationship between properties and structure of the enzymes, their mechanism of action and kinetics of enzymatic reactions. CO5: An understanding of biochemistry in photosynthesis, carbon assimilation, functioning of the biochemical components of photosystems, photoexcitation and deexcitation of LHC.
5.	CH20301A	Photoinorganic Chemistry	 CO1: In- depth understanding of photochemical Laws, Ability to explain various photophysical process taking place in excited state and factors influencing them. CO2: Ability to identify and explain photophysical kinetics of excited state and electron transfer process CO3: In-depth understanding of photoreduction and related reactions. CO4: Ability to identify various types of photochemical reactions and its application. CO5: In-depth understanding of photochemical reactions in biological processes and its explanation using model systems.
		Synthetic Organic	CO1: A comprehensive knowledge of
6. MENT OF	CH20302A	Chemistry	organometallic and their uses in organic synthesis.
A TO ANGPO	NOT RY		

A

the				 CO2: A comprehensive knowledge of organometalloid and their uses in organic synthesis. CO3: Ability to demonstrate knowledge of asymmetric synthesis. CO4: Ability to design retro-synthetic strategies independently for compounds of moderate complexity. CO5: Ability to project and deprotect functional group during organic synthesis.
(7	CH20303A	Advanced Physical Chemistry	CO1: Able to find the connection between statistics and thermodynamics. and differentiate between classical statistics and quantum statistics CO2: Able to account for the physical interpretation of partition functions and be able to calculate thermodynamic properties of model systems with using Boltzmann, Fermi-Dirac and Bose-Einstein statistics. CO3: Able to understand process of aggregation of amphiphilic molecules and their industrial application.
•	8	CH20405A	Inorganic Chemistry Lab	 CO1: Ability to synthesize different first row transition metal complexes, their purification and crystallization. CO2: Ability to determine percentage of yield of the products and to characterize physical properties. CO3: Ability to carry out UV-vis spectroscopic studies of the prepared complexes. CO4: Ability to analyse UV-vis spectral data (Molar extinction coefficient, identification of d-d transistion and charge transfer).

IVth Semester

NG

-

Sl.No.	Semester	Subject Code	Subject Name	Course Outcome
1.		CH20113A	Bio-inorganic Chemistry	 CO1: Understanding of basic reactions in the biological systems and storage & transport of metabolic energy. CO2: Ability to understand ion transport across the biological membrane. CO3: In-depth knowledge of biological redox reactions, their importance and dioxygen in biological systems. CO4: In-depth Knowledge of metalloproteins in biological system and their active site structures. CO5: Knowledge of metalloenzymes and their
2.		CH20114A	Solid State Chemistry & Interface Science	 applications in biological systems. CO1: Able to understand basic concept of crystal structure, its defect and its application to explain electrical properties of the solid material. CO2: Able to describe the fundamental aspects of colloid and surface chemistry and demonstrate how colloid and surface chemistry is applied in industry and the environment.
3.	IV th	CH20115A	Group Theory – A Chemist Approach	 CO1: Ability to identify the symmetry elements and symmetry operation in molecules. CO2: Ability to identify point group, group multiplication table, subgroups and various groups. CO3: Ability to make transformation matrix for various symmetry elements. CO4: Ability to make irreducible character representation of a point group. CO5: Able to construct character table and apply them to find various properties of molecules.
4.		CH20116A	Quantum Chemistry II	CO1: Understanding of approximation methods in quantum chemistry CO2: Application of these methods for multi- electronic systems CO3: Application of these methods for explaining chemical bonding.
5.	THENT OF	CH20304A	Chemistry of Nanomaterials	 CO1: Understanding of basics of nanomaterials. CO2: Ability to generate new methods for synthesis of nanomaterials.
1W # 060	Dote	HEMISTRY		

<

١

			 CO3: Knowledge of various experimental techniques and characterizations of nanomaterials. CO4: Applications of nanomaterials in various fields of chemistry. CO1: Understanding Host-Guest Chemistry, receptors & Macrocyclic effects
6.	CH20305A	Supramolecular Chemistry	 CO2: Understanding of various intermolecular forces and it application in construction of supramolecules. CO3: Understanding chemistry of formation of various supramolecular systems and their application. CO4: Knowledge of self-assembly process in construction of supramolecules. CO5: Understanding the role of coordination chemistry in construction of functional supramolecular materials.
	CH20306A	Medicinal Chemistry	 CO1: In-depth understanding of mode of action of drugs. CO2: Synthesis and ability to establish structure-activity relationships of various classes of drug. CO3: Understanding the role and function of Antihistaminics. CO4: Expertise in synthesis and classifications of various classes of local Anaesthetics. CO5: In-depth understanding of various classes of Antimalarial drugs.

01/07/2022

Prof. (Dr.) N.K. Bhattacharyya Head, Department of Chemistry Sikkim Manipal Institute of Technology Majitar, East Sikkim-737136